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Abstract- Large scale full-wave solution of multiple scat- 
tering among cylindrical vias in planar waveguides is mod- 
eled using Foldy-Lax equations. Solution of the Foldy- 
Lax equations with large number of unknowns is done ef- 
ficiently using the sparse-matrix canonical-grid method. In 
the method, interactions among vias are decomposed into 
strong interactions part and weak interactions part where 
the calculation can be carried out using ZD-FFT after the 
locations of the vias have been translated onto the uniform 
grids. The ilnal solution of the Foldy-Lax equations is calcu- 
lated by iterative method with matrix-vector multiplication 
speeded up by the 2D-FFT operation. The results show 
O(NlogN) CPU efficiency and O(N) memory efficiency and 
make large scale via problem possible for computer simula- 
tion. 

I. INTRODUCTION 

In recent years, there has been increasing interests on 
the electromagnetic effects of using vias on the high speed 
interconnect design. For sub-GHz frequency PCB inter- 
connect analysis, effects of single vias sre usually approx- 
imated by equivalent RLC circuit model. For higher fre- 
quency, the concern is that quasi-static or equivalent cir- 

cuit model would not be accurate enough for practical ap- 
plication, and it becomes necessary to resort to full wave 
analysis for more accurate modeling of the same problem. 
From the electromagnetic perspective, as signal vias are 
excited, parallel plate waveguide effects are induced by the 
multi-layered geometry; signals on active vias can excite 
waveguide modes within layers and hence can affect other 
separated vias. As a second order effect, the affected vias 
can in turn influence the original signal. Because of the 
waveguide modes, such coupling is not necessarily local- 
ized in space. This poses considerable design problems for 
reliability, high speed, and simulation. Such coupling can 
even cause unreliable behavior or complete signal failure, 
along with signal integrity loss, higher delays, and inappro 
priate switching of signals. In published results, methods 
like FDTD [l] and moment methods [2)[3] have been used 
for the via modeling. While those methods offer good ac- 
curacy for a few number of vias, they are computationally 
prohibitive for large scale problems. Simpler models us 
ing quasi-static electromagnetic analysis [4]-[8] have also 
been developed. Recently, we used a semi-analytical tech- 
nique of Foldy-Lax[S] equations to compute the full wave 
solution of multiple scattering cylindrical vias in planar 
waveguides. The waveguide modes are decoupled in the 
Foldy- Lax equations so that the solution can be calculated 
for each waveguide mode separately. It has been shown in 
[9] that the approach agrees with the results from other 

literatures. In practical applications, tens of thousands of 
vias are commonly seen on a printed circuit board. Solv- 
ing the Foldy-Lax equation using direct matrix inversion 
would quickly deplete the computer resource because its 
CPU dependency is of O(N3) and memory requirements of 
O(N2), making large scale via problem intractable. In deal- 
ing with large scale electromagnetic problems, researchers 
have developed new algorithms that will dramatically re- 
duce the complexity of many electromagnetic from poly- 
nomial order to logarithmic[l2][13][14] order or even linear 
order[l6] [15]. In this paper, a sparse-matrix canonical-grid 
method(SMCG)[12] is used to solve the Foldy-Lax multi- 
ple scattering equation efficiently, The method decomposes 
the all interactions into strong interaction(near field) part 
and weak interaction(far field) part. For strong interac- 
tion part, field solution are calculated directly based on 
the Foldy-Lax equations. For the weak interaction part, 
which accounts for most of the CPU time, the field solu- 
tion is calculated indirectly by expanding the original field 
about uniform grids so that FFT can be used to speed up 
the computation. As a result, we can solve Foldy-Lax mul- 
tiple scattering equations with O(N log N) CPU efficiency 
and O(N) memory efficiency. 

II. FOLDY- LAX EQUATIONS FOR SCATTERING WITH 

MULTIPLE CYLINDERS 

Consider N vias placed between two parallel plates cen- 
tered at pi, & . . . . . . . . 7jlv as shown in Figure 1. The solution 
is expressed in terms of waveguide modes, and also in terms 
of vector cylindrical waves for modal representation of field 
in the region between the plates. The multiple scattering 
can be formulated in terms of Fold-Lax multiple scattering 
equations. The details can found in our pervious work in 
[9][10]. The Foldy- Lax equations state that the final ex- 
citing field of cylinder q is equal to the incident field plus 
scattered fields from all cylinders except the scattered field 
from itself. The scattered field will be incident p to cylinder 
q can be reexpressed by using translation addition theo- 
rem. Thus the Foldy-Lax multiple scattering equations for 
TM polarization are in the following form 

TM(Y) = 
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where aLMcq) is the incident field of the current source 
onto cylinder q and is given in. In the Foldy- Lax equa- 
tions there is no coupling between different e because each 
I corresponds to a specific k,. Neither is there coupling 
between TE and TM waves because the cylinders are per- 
fectly conducting. 

For the general case with N cylinders with voltages 
VI,, vsu, . . . . . . . . . . v/Nu,Vrb, vs/2b, . . . . . . . and VNb. Then, we have, 
for sources at z’ = d/2 , that is VI,,, &, . . . . . . . . . . v/N%, 
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By solving Foldy- Lax equations for ,EMcq), we can find 
currents at the cylinders at z = +d/2. That will be current 
IUU,that is current at z = d/2 due to source at z’ = d/2 

0 
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Then we find currents at the cylinders at z = -d/2. 
That will be current Ibu, that is current at z = -d/2 due 
to source at ZI =d/2 

I(Pk‘ = zra c ,i”(P)kpe ‘&” ’ 
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III. APPLYING SPARSE-MATRIX CANONICAL-GRID 

METHOD(SMCG) TO SOLVE THE FOLDY-LAX 

EQUATION 

In the SMCG method, the field is decomposed into 
strong interaction part and weak interaction part as shown 
in Figure 2. The strong (near field) interactions, which is 
defined for the neighboring vias within a radius, are cal- 
culated directly from the Foldy-Lax equations. For the 
weak(far field) interactions, which account for most compu- 
tation time, the computation is done indirectly via transla- 
tion to the canonical grid points by using the translational 
addition theorem. Figure 2 illustrates the process of indi- 
rect calculation for the weak interaction between via p and 
via q. First, the local-to-grid expansion(p + pe) trans- 
lates the scattered field from p to its nearest grid po by 
using the translational addition theorem, then followed a 
grid-togrid(pe + qo) operation which is carried out on the 
canonical grids. Lastly, the scattered field originating from 
p is now collected in qo and to be distributed to’ the ob- 
serving via q by a grid-tolocal expansion(qe 4 q), where 
the translation addition theorem is again used. Since the 
Green’s function in our problem is translational invariant, 

one can observe that the grid-to-grid operations on the uni- 
form grids can be evaluated efficiently using BD-FFT in 
O(N, log IV,) CPU efficiency and O(N) memory efficiency, 
where Ns is the number of canonical grids and N is the 
total number of vias. Note that it is possible for the same 
grid point to associate with more than one via. In this case, 
the field coming from different vias are collected (added) 
together. For SMCG algorithm, we rewrite the Foldy-Lax 
equations (1): 

TM(q) _ TM(q) 
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where S(p) represents the set of vias in the neighborhood 
of via p. Moreover, a via q is said to be in the neighborhood 
of via p if it satisfies 

Ippo - pq,, 1 5 nd 63) 

For one combination of (m, n, m’, n’) indices, (5) can be 

rewritten in matrix form as 

== = z (7) 
E(S) z(W) 

z = 2 +z (8) 
I = Z(d)~(G)~W 

(9) 

=w 
where 2 

=w 
and Z correspond to strong and weak inter- 

action, z and si are the vector form of wki and aen (q) .And, 
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=(u) 
It can be seen that L is simply a local-togrid oper- 

ation of O(N) CPU/ memory efficiency since it maps N 
=(4 

local vias to their corresponding grids(i.e. L only has N 
=(4 

nonzero elements), and L is a grid-to-local operation of 
O(N) CPU/memory efficiency doing the reverse mapping 

=(G) 
from the grids to the vias. Also recognized is that 2 is a 
block toeplitz matrix when cast&=in$wo dimension grid in- 

dices. This means the storage of 2 only requires O(N,) , 
and since the kernel function in Z$~~, is translational in- 

=(C)- 
variant, a 2 X multiplication can be facilitated by using 
2D-FFT with O(N, log Ng) CPU efficiency. 

IV. MATRIX NOTATION FOR ADMITTANCE MATRIX 7 
OF INTERIOR PROBLEM 

After Foldy-Lax equation is solved using SMCG method, 
the currents can be computed. If  we define current vectors 
of dimension N, 7”” , which is current at upper aperture 
of z = d/2 due to sources at z’ = d/2.Also, current vectors 

of dimension N, ib” , which is current at lower aperture of 
z = -d/2 due to sources at Z’ = d/2. 

-uu 
I 

= BZL- 
= Y v  

-bu =bu 
I =YT 

Each column of the admittance matrix can be solved indi- 
vidually under a particular port excitation condition. 

=zLu 
Y, = T”” 

V3“=l,V;=0 with k#j,Vjb=O for all i 
(10) 

Fy = ihI 
Vj”=l,V;=O with /c#j,V,b=O for all i 

(11) 

--lb =bu 
where Y and Y are of dimension NxN, yju and FP,” 

BU =bu 
are the j-th column of Y andY , respectively. Also, 

?“” and 7”” can be computed based on (3), (4) and the 
exciting coefficients De solved by SMCG method. 

It has been shown in[9] that the admittance matrix can 
be expressed as 

F= [ T;Ib ;r] (12) 

The conversion from the admittance matrix to the scat- 
tering matrix can be done by 

L (Yo~+~)-l (Yis) (13) 

where Ye is the characteristic port admittance and f  is 
the identity matrix of 2N by 2N. 

V. NUMERICAL RESULTS AND DISCUSSION 

In implementing the SMCG algorithm, the number of 
canonical grids Ng is maintained roughly proportional to 
the number of viss N so that the grids are refined when 
the number of vias increases. As a result, each iteration 
will have O(N log N) CPU efficiency. In Table 1 and 2, 
the solution of the Foldy-Lax equations for the exciting 
coefficients are carried out using SMCG method and di- 
rect matrix inversion, respectively. The tolerance of the 
residue norm is set to 10e4 for conjugate gradient method 
in SMCG solution. For the SMCG method(Table l), the 
total CPU time roughly scales as O(N2 log N) as the per 
iteration time O(N log N) is multiplied by the number of 
iteration showing an O(N) dependence. The memory ef- 
ficiency scales in O(N) as expected. For matrix inversion 
method(Table 2), the total CPU time consists of matrix 
filling time with roughly O(N2) dependence and matrix 
inversion time of O(N3) dependence. For large number 
of vias(>2500), it is obvious that the CPU efficiency is 
dominated by O(N3).The memory of the matrix inversion 
method scales in O(N2) as the full matrix size needs to 
be stored. Note that the last three rows of Table 2 are 
extrapolated data based on the the dependence aforemen- 
tioned, the actual simulation requires more memory than 
what we have on the current machine(Pentium 800Mhz, 
256 MB RAM). In all cases, the SMCG outperforms the 
matrix inversion method in both CPU and memory eff- 
ciency. More importantly, the linear memory dependence 
in SMCG method allows us to solve a much larger scale 
multiple scattering via problem while the direct matrix in- 
version method quickly saturates the machine capacity in 
a few thousand viss for most machine. 
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Fig. 2. Direct far field interactions(da.shed arrow) between two vias 
are calculated indirectly through translation to the regular grid 
points(solid arrows). The near field interactions within a defined 
radius are computed directly. For the case shown above, the near 
field radius is , and the interactions within the two dashed circles 
are calculated directly. Note that it is possible for more than one 
cylinder to be associated with the same gird. 

) # of vias 1 Total CPU 1 illtrmiz 1 Inv Time ) Memory I 
c 

512 144 ‘116 28 8 

1024 805 581 224 32 

2048 3335 2240 1094 128 

4096 22090 13339 8752 512 

8192 158379 88363 70016 2048 

16384 1193645 633517 560128 8192 

Table 2: CPU time(second)/Memory(MB) scaling based 
on direct matrix inversion. 
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Fig. 1. N randomly placed vais between two parallel metal planes. 

# of vias CPU per iter. # of iter. Total CPU 
Setup 

Time 
Memory 

Table 1: CPU time(second)/Memory(MB) scaling based 
on SMCG Method 
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