IF-TH-16

Multiple Scattering among Vias in Planar
Waveguides Using SMCG Method

Chung-Chi Huang*, Leung Tsang*, and Chi Hou Chan**
*Department of Electrical Engineering, University of Washington, Seattle, WA 98195-2500.
**Department, of Electronic Engineering, City University of Hong Kong, Hong Kong

Abstract— Large scale full-wave solution of multiple scat-
tering among cylindrical vias in planar waveguides is mod-
eled using Foldy-Lax equations. Solution of the Foldy-
Lax equations with large number of unknowns is done ef-
ficiently using the sparse-matrix canonical-grid method. In
the method, interactions among vias are decomposed into
strong interactions part and weak interactions part where
the calculation can be carried out using 2D-FFT after the
locations of the vias have been translated onto the uniform
grids. The final solution of the Foldy-Lax equations is calcu-
lated by iterative method with matrix-vector multiplication
speeded up by the 2D-FFT operation.
O(Nlog N) CPU efficiency and O(N) memory efficiency and
make large scale via problem possible for computer simula-
tion.

I. INTRODUCTION

In recent years, there has been increasing interests on
the electromagnetic effects of using vias on the high speed
interconnect design. For sub-GHz frequency PCB inter-
connect analysis, effects of single vias are usually approx-
imated by equivalent RLC circuit model. For higher fre-
quency, the concern is that quasi-static or equivalent cir-
cuit model would not be accurate enough for practical ap-
plication, and it becomes necessary to resort to full wave

analysis for more accurate modeling of the same problem.

From the electromagnetic perspective, as signal vias are
excited, parallel plate waveguide effects are induced by the
multi-layered geometry; signals on active vias can excite
waveguide modes within layers and hence can affect other
separated vias. As a second order effect, the affected vias
can in turn influence the original signal. Because of the
waveguide modes, such coupling is not necessarily local-
ized in space. This poses considerable design problems for
reliability, high speed, and simulation. Such coupling can
even cause unreliable behavior or complete signal failure,
along with signal integrity loss, higher delays, and inappro-
priate switching of signals. In published results, methods
like FDTD [1] and moment methods [2][3] have been used
for the via modeling. While those methods offer good ac-
curacy for a few number of vias, they are computationally
prohibitive for large scale problems. Simpler models us-
ing quasi-static electromagnetic analysis [4]-[8] have also
been developed. Recently, we used a semi-analytical tech-

The results show

literatures. In practical applications, tens of thousands of
vias are commonly seen on a printed circuit board. Solv-
ing the Foldy-Lax equation using direct matrix inversion
would quickly deplete the computer resource because its
CPU dependency is of O(IV?) and memory requirements of
O(N?), making large scale via problem intractable. In deal-
ing with large scale electromagnetic problems, researchers
have developed new algorithms that will dramatically re-
duce the complexity of many electromagnetic from poly-
nomial order to logarithmic[12][13][14] order or even linear
order[16]{15]. In this paper, a sparse-matrix canonical-grid
method(SMCG)[12] is used to solve the Foldy-Lax multi-
ple scattering equation efficiently. The method decomposes
the all interactions into strong interaction(near field) part
and weak interaction(far field) part. For strong interac-
tion part, field solution are calculated directly based on
the Foldy-Lax equations. For the weak interaction part,
which accounts for most of the CPU time, the field solu-
tion is calculated indirectly by expanding the original field
about uniform grids so that FFT can be used to speed up
the computation. As a result, we can solve Foldy-Lax mul-
tiple scattering equations with O(NN log N) CPU efficiency
and O(N) memory efficiency.

II. FoLDY- LAX EQUATIONS FOR SCATTERING WITH
MULTIPLE CYLINDERS

Consider N vias placed between two parallel plates cen-
tered at Py, Pa-eeeees Py as shown in Figure 1. The solution
is expressed in terms of waveguide modes, and also in terms
of vector cylindrical waves for modal representation of field
in the region between the plates. The multiple scattering
can be formulated in terms of Fold-Lax multiple scattering
equations. The details can found in our pervious work in
[9][10]. The Foldy- Lax equations state that the final ex-
citing field of cylinder q is equal to the incident field plus
scattered fields from all cylinders except the scattered field
from itself. The scattered field will be incident p to cylinder
q can be re-expressed by using translation addition theo-

rem. Thus the Foldy-Lax multiple scattering equations for

TM polarization are in the following form

)]

nique of Foldy-Lax[9] equations to compute the full wave wLM(q) GZ:,M((I)
solution of multiple scattering cylindrical vias in planar N )
waveguides. The waveguide modes are decoupled in the +Z Z HP, (ke |7y —pql)e’("_"‘)"’ﬁpq .
Foldy- Lax equations so that the solution can be calculated p=1 m=—c0
for each waveguide mode separately. It has been shown in P#q
[9] that the approach agrees with the results from other T )szn’fr (@)
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where ag;lM(Q) is the incident field of the current source
onto cylinder q and is given in. In the Foldy- Lax equa-
tions there is no coupling between different ¢ because each
¢ corresponds to a specific k,. Neither is there coupling
between TE and TM waves because the cylinders are per-

fectly conducting.
For the general case thh N cylinders with voltages

Vm, VZu, .......... vNu,Vlby V2b, ....... and VNb Then, we have,
for sources at 2’ = d/2 , that is Viy, Vay, cceeerenns VN,
eTnM (9) (2)
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By solving Foldy- Lax equations for f @ , we can find

currents at the cylinders at z = +d/2. That will be current
I"*that is current at z = d/2 due to source at z' =d/2
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Then we find currents at the cylinders at z = —d/2.
That will be current I%*,that is current at z = —d/2 due
to source at 2/ =d/2
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III. APPLYING SPARSE-MATRIX CANONICAL-GRID

METHOD(SMCG) TO SOLVE THE FoLDY-LAX
EQUATION

In the SMCG method, the field is decomposed into
strong interaction part and weak interaction part as shown
in Figure 2. The strong (near field) interactions, which is

defined for the neighboring vias within a radius, are cal- .

culated directly from the Foldy-Lax equations. For the
weak(far field) interactions, which account for most compu-
tation time, the computation is done indirectly via transla-
tion to the canonical grid points by using the translational
addition theorem. Figure 2 illustrates the process of indi-
rect calculation for the weak interaction between via p and
via q. First, the local-to-grid expansion(p — pp) trans-
lates the scattered field from p to its nearest grid ps by
using the translational addition theorem, then followed a
grid-to-grid(po — go) operation which is carried out on the
canonical grids. Lastly, the scattered field originating from
p is now collected in g and to be distributed to the ob-
serving via ¢ by a grid-to-local expansion(gy — g), where
the translation addition theorem is again used. Since the
Green’s function in our problem is translational invariant,

one can observe that the grid-to-grid operations on the uni-
form grids can be evaluated efficiently using 2D-FFT in
O(N,log N,) CPU efficiency and O(N) memory efficiency,
where N is the number of canonical grids and N is the
total number of vias. Note that it is possible for the same
grid point to associate with more than one via. In this case,
the field coming from different vias are collected (added)
together. For SMCG algorithm, we rewrite the Foldy-Lax
equations (1):
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where S(p) represents the set of vias in the neighborhood
of via p. Moreover, a via ¢ is said to be in the neighborhood
of via p if it satisfies

oy — (6)

For one combination of (m,n,m',n’) indices, (5) can be
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rewritten in matrix form as
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where Z ) and Z ) correspond to strong and weak inter-
action, @ and @ are the vector form of w,(zq) and a(q) And,
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It can be seen that f(u) is simply a local-to-grid oper-
ation of O(N) CPU/memory efficiency since it maps N

local vias to their corresponding grids(i.e. f(u) only has N

nonzero elements), and T isa grid-to-local operation of
O(N) CPU/memory efficiency doing the reverse mapping
=(G)
from the grids to the vias. Also recognized is that Z " isa
block toeplitz matrix when casted in two dimension grid in-
. =(G)
dices. This means the storage of Z'  only requires O(IVy),
and since the kernel function in Z,(,g':?m is translational in-

=(G)—
variant, a Z ( )X multiplication can be facilitated by using
2D-FFT with O(N, log Ny) CPU efficiency.

IV. MATRIX NOTATION FOR ADMITTANCE MATRIX Y
OF INTERIOR PROBLEM

After Foldy-Lax equation is solved using SMCG method,
the currents can be computed. If we define current vectors
of dimension N, ™ , which is current at upper aperture
of 2 = d/2 due to sources at 2z’ = d/2.Also, current vectors

of dimension N, ™ , which is current at lower aperture of
z = —d/2 due to sources at 2’ = d/2.

=uu
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Each column of the admittance matrix can be solved indi-
vidually under a particular port excitation condition.

=uu

s = 1" . b , (10
Vi=1,Vi#=0 with k#j,V?=0 for all i
=bu —bu
3= I | (11)
V=1,V#=0 with k+#34,VP=0 for all i
=uu =bu . . T vl
whereY and Y are of dimension NxN, Y ; and Y ;

X =uu =bu
are the j-th column of Y and Y , respectively. Also,

T* and T can be computed based on (3), (4) and the
exciting coefficients W, solved by SMCG method.

It has been shown in[9] that the admittance matrix can
be expressed as

=ub
-Y
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= Y
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The conversion from the admittance matrix to the scat-
tering matrix can be done by

= N

5= (YoI+Y) (Yoz—y)

where Yj is the characteristic port admittance and ? is
the identity matrix of 2N by 2N.

(12)

(13)

V. NUMERICAL RESULTS AND DISCUSSION

In implementing the SMCG algorithm, the number of
canonical grids N, is maintained roughly proportional to
the number of vias N so that the grids are refined when
the number of vias increases. As a result, each iteration
will have O(N log N) CPU efficiency. In Table 1 and 2,
the solution of the Foldy-Lax equations for the exciting
coefficients are carried out using SMCG method and di-
rect matrix inversion, respectively. The tolerance of the
residue norm is set to 10~ for conjugate gradient method
in SMCG solution. For the SMCG method(Table 1), the
total CPU time roughly scales as O(N?log N) as the per
iteration time O(IV log N) is multiplied by the number of
iteration showing an O(V) dependence. The memory ef-
ficiency scales in O(N) as expected. For matrix inversion
method(Table 2), the total CPU time consists of matrix
filling time with roughly O(N?) dependence and matrix
inversion time of O(N?3) dependence. For large number
of vias(>2500), it is obvious that the CPU efficiency is
dominated by O(N?).The memory of the matrix inversion
method scales in O(N?) as the full matrix size needs to
be stored. Note that the last three rows of Table 2 are
extrapolated data based on the the dependence aforemen-
tioned, the actual simulation requires more memory than
what we have on the current machine(Pentium 800Mhz,
256 MB RAM). In all cases, the SMCG outperforms the
matrix inversion method in both CPU and memory’ eff-
ciency. More importantly, the linear memory dependence
in SMCG method allows us to solve a much larger scale
multiple scattering via problem while the direct matrix in-
version method quickly saturates the machine capacity in
a few thousand vias for most machine.
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2. Direct far field interactions(dashed arrow) between two vias
are calculated indirectly through translation to the regular grid
points(solid arrows). The near field interactions within a defined
radius are computed directly. For the case shown above, the near
field radius is , and the interactions within the two dashed circles
are calculated directly. Note that it is possible for more than one
cylinder to be associated with the same gird.
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Fig. 1. N randomly placed vais between two parallel metal planes.

direct matrix inversion.

2 Af ina ODIT naw jban dL A ibaw Tatal ODIT Setup Mamaory
# of vias | CPU per iter # of iter Total CPU Time Memory
512 0.2034 59 40 28 10.078
1024 0.4545 121 113 58 0.156
2048 0.9106 246 344 120 0.312
4096 2.0353 482 1231 . 250 0.624
8192 4.3211 984 4753 501 1.248
16384 9.2143 1988 19329 1011 2.496

Table 1: CPU time(second)/Memory(MB) scaling based
on SMCG Method
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